

Original Research Article

DIAGNOSTIC EFFICACY OF BLOOD-BASED PROTEIN BIOMARKERS IN ISCHEMIC STROKE: A SYSTEMATIC REVIEW ACCORDING TO PRISMA GUIDELINES

Sridhar Amalakanti¹, Shruthika K², Sai Teja Gadde³, Rithish Nimmagadda⁴, Vijaya Chandra Reddy Avula⁵

¹Assistant Professor, Department of General Medicine, AIIMS Mangalagiri, India.

²Junior Resident, Department of General Medicine, AIIMS Mangalagiri, India.

³Junior Resident, Department of General Medicine, AIIMS Mangalagiri, India.

⁴Junior Resident, Department of General Medicine, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, India.

⁵Additional Professor, Department of Psychiatry, AIIMS Mangalagiri, India.

 Received
 : 20/04/2024

 Received in revised form : 14/07/2024

 Accepted
 : 30/07/2024

Corresponding Author: Dr. Sridhar Amalakanti, Assistant Professor, Department of

General Medicine, AIIMS Mangalagiri, India. Email: sridhar@aiimsmangalagiri.edu.in

DOI: 10.70034/ijmedph.2024.3.57

Source of Support: Nil, Conflict of Interest: None declared

Int J Med Pub Health 2024; 14 (3); 311-329

ABSTRACT

Background: Stroke, the second leading cause of death globally, predominantly manifests as ischemic stroke. This review synthesizes current evidence on blood-based protein biomarkers for diagnosing ischemic stroke, aiming to enhance early detection and treatment strategies.

Materials and Methods: Adhering to PRISMA guidelines, we systematically searched PubMed, Cochrane, Embase, and Web of Science databases for studies published up to 2024, focusing on blood-based protein biomarkers in ischemic stroke diagnosis. Quality assessment and data extraction were meticulously performed, emphasizing biomarker sensitivity, specificity, and diagnostic value.

Results: Our review included 190 studies, highlighting several promising biomarkers such as GFAP, and S100B for their diagnostic accuracy in distinguishing ischemic stroke from other stroke types and healthy controls.

Conclusion: Blood-based protein biomarkers demonstrate significant promise for early and accurate ischemic stroke diagnosis. Their integration into clinical practice could revolutionize stroke management, offering a non-invasive, rapid diagnostic tool. However, further large-scale studies are necessary to validate these findings and establish standardized protocols for their clinical application.

Keywords: Ischemic stroke, Biomarkers, Protein biomarkers, Stroke diagnosis, Acute Stroke, Neurological Biomarkers, Predictive value of tests, early diagnosis.

INTRODUCTION

Stroke has emerged as the second most prevalent cause of death and the third most prevalent cause of disability adjusted life years (DALY) worldwide.^[1] Ischemic stroke accounts for 87% of all stroke cases in western countries, while the remaining 13% are caused by hemorrhagic stroke.^[2] The proportion fluctuates according to the Indian population, with the ischemic stroke representing 68-80% and the hemorrhagic stroke representing 20-32% of the total stroke type.^[3]

The management of ischemic stroke entails the administration of thrombolytic medications, which must be given within a certain time window of 3 -

4.5 hours.^[4] Currently, a non-contrast Computed Tomography (CT) brain scan is frequently used to verify the diagnosis of stroke and distinguish between ischemic stroke and hemorrhagic stroke.^[5] CT scans, while reliable, have limited accessibility, especially in remote areas of low-middle income countries.^[6] Its primary application is for the purpose of diagnosing or excluding an hemorrhagic stroke, however its diagnostic sensitivity for an ischemic stroke is restricted.^[7] In addition, it has the disadvantage of exposing patients to radiation.^[8]

Diffusion tensor Magnetic Resonance Imaging (MRI) is a more dependable modality.^[7] than a CT scan for immediately diagnosing strokes, however it is expensive and not readily available. Despite the

advancements in neuroimaging, there are various obstacles that have impeded its use in stroke diagnosis and differentiation. These include the lengthy process, expensive equipment, restricted availability, and inconsistencies in the processing of radiological images.^[9]

Contrarily, blood tests have the capacity to reduce the cost of diagnostic procedures and may easily be employed in primary healthcare settings. Blood biomarkers offer a reliable, rapid, and cost-effective approach for diagnosing ischemic stroke.^[10] Biomarker signatures can assist in the selection of appropriate treatment protocols for individuals with acute stroke. Hence, it is imperative to utilize a blood-based biomarker approach that has both heightened sensitivity and specificity in order to efficiently and promptly detect ischemic stroke in acute environments, thereby facilitating enhanced therapeutic methods.^[11]

Multiple blood biomarkers associated with different pathophysiological processes of stroke have been identified as potentially beneficial for its therapy. The field of biomarker research is rapidly evolving, with new potential markers being discovered and validated regularly.^[12] An updated systematic review can synthesize the latest evidence, providing clinicians and researchers with a comprehensive overview of the current state of knowledge in this area. The aim of this study was to conduct a thorough analysis of all the diagnostic test studies published so far in order to find prospective bloodbased biomarkers that can be utilized for the diagnosis of ischemic stroke.

MATERIAL AND METHODS

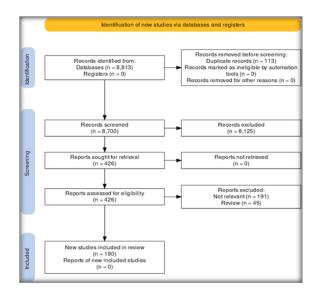
Search Criteria

A thorough literature search was performed until January 5, 2024, using the PubMed, Cochrane, Embase, and Web of Science databases. The search included prominent trial registries such as clinicaltrial.gov (www.clinicaltrials registry.gov), Stroke Trial Registry (www.strokecenter.org/trials), and Indian Clinical Trial Registry (www.ctri.nic.in). The search criteria used were: ('Blood biomarkers') AND ('Ischemic Stroke'). The precise search criteria are described in the supplementary appendix. In addition, we thoroughly analyze and evaluate any secondary materials that are available. The search was restricted to studies conducted on human subjects and published solely in the English language.

Selection Criteria

To be eligible for inclusion in the systematic review, qualifying studies had to meet the following criteria: (a) The diagnostic studies enrolled patients diagnosed with ischemic stroke. (b) The diagnosis of stroke must be validated by CT/MRI scans that demonstrate the presence of a recent blockage of blood supply to the brain, in addition to the clinical diagnosis. (c) The research must have identified blood-based biomarkers within the initial week following the onset of the stroke. (d) The studies must have included data on either the biomarker levels or the sensitivity and specificity values for the diagnostic biomarker. The main rationales for eliminating the research were: (a) The study did not function as a diagnostic tool. (b) There existed other articles that addressed the same participants from the identical study. (c) The study involved patients who did not have ischemic stroke.^[5] Insufficient information was available to assess the quality of their approach. The systematic evaluation did not include conference presentations since there was not enough material available to assess their methodological quality. The systematic review did not impose any stipulation regarding the inclusion of a minimum sample size.

Population


Two authors independently collected data from all available sources within each article, including details such as the sample size, analyzed protein profiles, employed technique, findings, study limitations, and the sensitivity and specificity of the biomarkers. All authors reached a compromise to address any conflict.

Evaluation of Quality

We evaluated the methodological rigor of each study included in our systematic review using the QUADAS approach that was modified by Whiteley et al.^[13] Two authors independently assessed the quality of the investigations. The disparity in the quality scores was resolved through a collaborative conversation involving all the authors.

RESULTS

We examined 8944 records and evaluated 526 complete texts to determine their eligibility. Ultimately, a total of 190 studies from 40 nations were incorporated, as shown in PRISMA(14) Figure 1.

312

According to the QUADAS quality evaluation of the 190 studies analyzed in this systematic review, the overall risk of bias and concerns about applicability can be stated as follows:

Bias Risk

- Patient Selection: The level of bias in patient selection was predominantly uncertain throughout the research, with 111 studies (58.8%) having an uncertain risk and 67 studies (35.2%) having a low risk. Merely 12 papers, accounting for 6.0% of the total, were classified as high risk.
- Index Test: A significant majority of studies (182 studies, 96.2%) shown a low likelihood of bias in the index test domain. Out of the total number of studies, only 7 (3.8%) were found to have a significant risk of bias for the index test.
- Regarding the reference standard, the risk of bias was low in 136 studies (71.4%), unclear in 46 studies (24.2%), and high in 8 studies (4.4%).
- Flow and Timing: The majority of studies (153 studies, 80.8%) exhibited a low risk of bias in terms of flow and timing. The risk was ambiguous in 29 studies (15.4%) and elevated in 7 studies (3.8%) for this particular area.

Concerns Regarding Relevance

- Patient Selection: The majority of research (88.5%) demonstrated minimal problems regarding the applicability of their patient selection (1618 studies). Merely 17 research (8.8%) exhibited ambiguous problems, while 5 studies (2.7%) displayed significant worries.
- Index Test: The vast majority of studies (189 studies, 99.5%) had few reservations with the applicability of the index test. Out of all the studies, only one (0.5%) raised significant issues.
- Reference Standard: The applicability of the reference standard was deemed low in 183 research (96.7%), unclear in 5 studies (2.7%), and high in 1 study (0.5%).

Important findings are

- The research covers a broad variety of publication years, ranging from 1997 to 2022. The latest research includes 6 studies from 2022, 11 studies from 2021, 14 studies from 2020, and 12 studies from 2019. There has been a noticeable rise in stroke biomarker research in recent years.
- The studies originate from various countries across the globe. The countries that have conducted the most number of studies include China (63 studies), USA (29 studies), Germany (16 studies), Turkey (15 studies), and Spain (10 studies).
- China has produced the highest number of studies in both overall and recent years, with a notable example being 22 studies from China between 2019 and 2022. China's present

leadership in stroke biomarker research is indicated by this.

- Additional nations with much research encompass Poland, Iran, Japan, Korea, India, and Egypt. This highlights the worldwide research focus on identifying stroke biomarkers.
- This systematic review encompassed a variety of study designs to investigate potential biomarkers for ischemic stroke. Prospective studies were the most common (39%, 74/190), Case-control studies made up 29% (55/190). Cross-sectional (15/190, 8%) and retrospective (11/190, 6%) designs were less common.

Just over one-third of studies (67/190, 35%) compared ischemic stroke to healthy controls only. The remaining studies made comparisons to hemorrhagic strokes (31/190, 16%), transient ischemic attacks (10/190, 5%), and stroke mimics (11/190, 6%).

Blood-based biosamples were heavily predominant, including whole blood (19%, 36/190), plasma (49%, 93/190), and serum (51%, 97/190). Other sample types like microvesicles (10/190, 5%) and PBMCs (3/190, 2%) were rarer. Interestingly, 10% of studies (19/190) analyzed platelets.

The included studies investigated a wide range of potential biomarkers for ischemic stroke. Proteins were by far the most commonly analyzed, examined in 59% (111/190) of studies. Frequently measured proteins included S100B (18%, 34/190), GFAP (18%, 31/172), NSE (5%, 10/190), and NfL (3%, 5/190). These proteins are biomarkers of neuronal and glial injury, making them logical targets in ischemic stroke. Other protein classes like metalloproteinases, acute phase proteins, cell adhesion molecules, and growth factors were also commonly studied.

MicroRNAs (miRNAs) emerged as another major biomarker category, investigated in 16% (31/190) of included studies. Top studied miRNAs were miR-124, miR-9, and miR-21. Metabolites and metabolomics approaches were utilized in 15% (28/190) of the studies. Similarly, transcriptomics and a focus on genes/transcripts was seen in 15% (28/190) of the included research. Proteomics techniques like mass spectrometry were applied in 13% (24/190) of studies.

The 190 studies varied considerably in their sample sizes, settings, diagnostic reference standards, and sampling times after stroke onset. Half of the studies (50%, 95/190) had sample sizes less than 100 participants. The largest studies had sample sizes over 300. Out of the total number of research papers, 19 (which accounts for 10%) had validation or replication. The setting was often not reported (45%, 85/190). For studies that did specify, the emergency department (15%, 29/190), neurology ward (14%, 27/190), and inpatient stroke units (6%, 7/190) were most common. Diagnosis was confirmed via CT (61%, 116/190) and/or MRI (48%, 92/190) in most studies. A total of 29% (55

out of 190) of studies failed to mention the diagnostic reference standard that was utilized. Finally, sampling times varied from 1 to 24 hours after symptom onset, with 24 hours (51%, 97/190

and 6 hours (17%, 32/190) as the most frequent single time points. However, 26 studies (15%) analyzed biomarkers longitudinally across multiple time points.

Table 1: Presents comprehensive findings from our quality evaluation

Study	Risk of Bias			Concerns of Applicability				
	Patient	Index	Reference	Flow and	Patient	Index test	Reference	
	Selection	test	Standard	timing	Selection	muex test	Standard	
Zhou 2021	Unclear	Low	Low	Low	Low	Low	Low	
Zhang 2022	Unclear	High	Unclear	Unclear	Low	Low	Unclear	
Yang 2022	Unclear	Low	Unclear	Unclear	Unclear	Low	Unclear	
"Turek-Jakubowska 2022	Unclear	Low	Low	Low	Low	Low	Low	
Tian 2022	Unclear	Low	Unclear	Unclear	Low	Low	Unclear	
Rahmati 2021	Low	Low	Low	Low	Low	Low	Low	
Li 2021	Unclear	Low	Low	Low	Low	Low	Low	
Induruwa 2022	Low	Low	Unclear	Unclear	Low	Low	Unclear	
Gawryś 2022 (9)	Low	Low	Low	Low	Low	Low	Low	
Cho 2022 (10)	Unclear	Low	Unclear	Unclear	Low	Low	Low	
Intiso 2004 (11) Perini 2001(12)	Low Low	Low	Low Low	Low Low	Low Low	Low	Low Low	
Pedersen 2004 (13)	Unclear	Low Low	Low	Low	Low	Low	Low	
Nayak 2011 (14)	Unclear	Low	Low	Low	Low	Low	Low	
Senes 2007 (15)	Low	Low	Unclear	Unclear	Low	Low	Unclear	
Feng 2019 (16)	High	Low	Low	Low	Low	Low	Low	
Blann 1999 (17)	Low	Low	Unclear	Low	Low	Low	Unclear	
Shyu 1997 (18)	Low	Low	Low	Low	Low	Low	Low	
Liu 2015 (19)	Low	Low	Low	Low	Low	Low	Low	
Supanc 2011 (20)	Low	Low	Low	Low	Low	Low	Low	
Wunderlich 2005(21)	Low	Low	Low	Low	Low	Low	Low	
Hu 2016 (22)	High	Low	Unclear	Unclear	Unclear	Low	Unclear	
Uno 2003 (23)	Low	Low	Low	Low	Low	Low	Low	
Sun 2019 (24)	Unclear	Low	Low	Low	Low	Low	Low	
Song 2006 (25)	Low	Low	Low	Low	Low	Low	Low	
Zitnanova 2016 (26)	Low	Low	Low	Low	Low	Low	Low	
Can 2015 (27)	Low	Low	Low	Low	Low	Low	Low	
Kimberly 2013 (28) Abboud 2007 (29)	Low Low	Low Low	Low Low	Low Low	Low Low	Low	Low Low	
Tang 2006 (30)	Unclear	Low	High	Low	Low	Low	Low	
Rainer 2007 (31)	Low	Low	Low	Low	Low	Low	Low	
Tiedt 2018 (32)	Low	Low	Low	Low	Low	Low	Low	
Zhu 2019 (33)	Low	Low	Low	Low	Low	Low	Low	
Zhu 2018 (34)	Unclear	Low	Low	Low	Low	Low	Low	
Zhou 2016 (35)	Unclear	Low	High	Low	Low	Low	Unclear	
Zhou 2018 (36)	Unclear	Low	Low	Low	Low	Low	Low	
Zhou 2022 (37)	Low	Low	Low	Low	Low	Low	Low	
Zhao 2016 (38)	Low	Low	Unclear	Unclear	Low	Low	Unclear	
Zhao 2017 (39)	High	Low	Low	Low	Low	Low	Low	
Zhao 2016 (40)	Unclear	Low	Low	Low	Low	Low	Low	
Zhang 2017 (41)	Unclear	Low	Low	Low	Low	Low	Low	
Zhang 2020 (42)	Low	Low	Low	Low	Low	Low	Low	
Zaremba 2006 (43) Yuan 2020 (44)	Unclear Unclear	Low Low	Low Low	Low Low	Low	Low	Low Low	
Yuan 2020 (44) Yigit 2017 (45)	Unclear	Low	Unclear	Unclear	Low Low	Low	Low Unclear	
Yang 2016 (46)	Unclear	Low	Low	Low	Low	Low	Low	
Xiong 2015(47)	Low	Low	Low	Low	Unclear	Low	Low	
Wu 2020 (48)	Unclear	Low	Low	Low	Low	Low	Low	
Williams 2007 (49)	Low	Low	Low	Low	Low	Low	Low	
Wang 2017 (50)	Low	Low	Low	Low	Low	Low	Low	
Wang 2014 (51)	Low	Low	Low	Low	Low	Low	Low	
Wang 2018 (52)	Unclear	Low	Low	Low	Low	Low	Low	
Wang 2017 (53)	Unclear	Low	Low	Low	Low	Low	Low	
Walsh 2016 (54)	Low	Low	Unclear	Unclear	Low	Low	Unclear	
Vukasovic 2006 (55)	Unclear	Low	Low	Low	Low	Low	Low	
von Recum 2015 (56)	Low	Low	Unclear	Unclear	Low	Low	Unclear	
Unden 2009 (57)	Low	Low	Low	Low	Unclear	Low	Low	
Tunç 2018 (58)	Unclear	Low	Low	Low	Low	Low	Low	
Tiedt 2017 (59)	Low	Low	Low	Low	Low	Low	Low	
Tiedt 2020 (60)	Low	Low	Low	Low	Low	Low	Low	
Tian 2015 (61)	Low	Low	Low	Low	Low	Low	Low	
Tian 2016 (62)	Low	Low	Unclear	Unclear	Low	Low	Unclear	

Tarem 2014 (63) Uncker Low		1	1	1	1	1	1	1
Shine 2015 (65) Low				2				U
Shamova 2010 (66) Uncker Low Low <thlow< th=""> Low Low</thlow<>		U						
Summo 2019 (67) Uncker Low								
Song 2019 (68) Unclear Low Low Low Low Unclear Low Unclear Sinats 2018 (70) Unclear Low Unclear Unclear Unclear Unclear Low Low <thlow< th=""> Low Low</thlow<>								
Simuta 2020 (69) Unclear Lowe Low Low <thlow< th=""> Low Low</thlow<>								
Simus 2018 (70) Unclear Low Unclear Low Low <thlow< th=""> Low Low</thlow<>			Low				Low	
Simuta 2014 (72)LowLowLowLowLowLowLowLowSharma 2015 (73)UnclearLowLowLowLowLowLowLowLowSharer 2020 (74)UnclearLowLowLowLowLowLowLowLowSeptramatian 2014UnclearLow <td>Simats 2020 (69)</td> <td>Unclear</td> <td>Low</td> <td>Unclear</td> <td>Unclear</td> <td>Low</td> <td>Low</td> <td>Unclear</td>	Simats 2020 (69)	Unclear	Low	Unclear	Unclear	Low	Low	Unclear
Sharma 2014 (2) Low Low Low Low Low Low Low Sharma 2015 (3) Unclear Low Low Low Low Low Low Low Sharma 2015 (7) Low Low Low Low Low Low Low Low Rozanski 2017 (7) Low L	Simats 2018 (70)	Unclear		Unclear	Unclear	Unclear	Low	Unclear
Shara 2015 (7.3) Unclear Low	Simats 2018 (71)	Unclear	Low	Unclear	Unclear	Low	Low	Unclear
Shaker 2020 (74) Unclear Low	Sharma 2014 (72)	Low	Low	Low	Low	Low	Low	Low
Septeminianiani 2014 Unclear Low Low <td>Sharma 2015 (73)</td> <td>Unclear</td> <td>Low</td> <td>Low</td> <td>Low</td> <td>Low</td> <td>Low</td> <td>Low</td>	Sharma 2015 (73)	Unclear	Low	Low	Low	Low	Low	Low
	Shaker 2020 (74)	Unclear	Low	Low	Low	Low	Low	Low
Sayan 2016 (76) Low Low <thlow< th=""></thlow<>		Unclear	Low	Low	Low	Low	Low	Low
Rozmski 2017 (77) Low Low <thlow< th=""> Low <thlow< th=""></thlow<></thlow<>		Low	Low	Low	Low	Low	Low	Low
Rondbary 2011 (78) High Low	` ` /							
Rice Santana 2014 Unclear Low								
Responds 2003 (81) Low	(79)							
Ref. 2016 (82) High Low Low Low How Low								
Ranga 2016 (83) High Low								
Rahmati 2020 (84) Unclear Low Low <thlow< th=""> <thlow< th=""> Low</thlow<></thlow<>		<u> </u>						
Qi 2021 (85) Unclear Low Low Low Low Low Low Low Pervice 2017 (87) Low		0				<i>U</i>		
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Rahmati 2020 (84)		Low	Low	Low	Low	Low	Low
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Qi 2021 (85)	Unclear	Low	Low	Low	Low	Low	Low
Penn 2018 (88)UnclearLowLowLowLowLowLowLowPark 2013 (89)LowLowLowLowLowLowLowLowLowPark 2013 (89)LowLowLowLowLowLowLowLowPark 2018 (90)HighLowUnclearLowHighLowLowUnclearPalm 2018 (92)LowLowLowLowHighLowLowLowUnclearO'Connell 2019 (94)UnclearLowLowLowLowLowLowLowLowLowO'Connell 2016 (95)UnclearLowL	Peycheva 2021 (86)	Low	Low	Low	Low	Low	Low	Low
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Perovic 2017 (87)	Low	Low	Low	Low	Low	Low	Low
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Low
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Pan 2020 (91)HighLowUnclearLowHighLowLowUnclearPalm 2018 (92)Low <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		U				U		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^	<u> </u>						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Nielsen 2020 (100)LowLowLowLowLowLowLowLowNguyen 2020 (101)LowLowLowLowLowLowLowLowLowNahan 2017 (102)HighLowLowLowLowLowLowLowLowMontaner 2012 (103)LowLowLowLowLowLowLowLowUnclearMatina 2013 (106)LowLowLowUnclearUnclearLowLowUnclearMatsuo 2013 (106)LowLowLowLowLowLowLowLowMatsuo 2013 (106)LowLowLowUnclearLowLowLowUnclearMahori 2002 (107)LowLowLowLowLowLowLowLowUnclearMahori 2013 (106)LowLowLowLowLowLowLowLowUnclearMahori 2013 (109)HighLowLowLowLowLowLowLowLowLa 2020 (112)HighLowLowLowLowLowLowLowLowLowLog 2013 (113)HighLowLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLowLiu 2014 (114)HighLo		2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Nahar 2017 (102)HighLowUnclearUnclearLowLowUnclearMontaner 2012 (103)LowLowLowLowLowLowLowLowUnclearMenon 2018 (104)LowLowLowUnclearUnclearLowLowUnclearMatila 2021 (105)LowLowLowUnclearUnclearLowLowUnclearMatsuo 2013 (106)LowLowLowLowLowLowLowUnclearMaly 2021 (108)LowLowLowUnclearLowLowLowUnclearMahy 2019 (110)UnclearLowLowLowLowLowLowLowLage 2017 (111)LowLowLowLowLowLowLowLowLage 2013 (113)HighLowLowLowLowLowLowLowLong 2013 (113)HighLowLowLowLowLowLowLowLin 2017 (116)HighLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLi 2020 (117)HighLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLi 2020 (117)HighLowLowLowLowLowLowLowLi 2020 (119)Unclear								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
Matsuo 2013 (106)LowLowLowLowLowLowLowMatsumori 2002 (107)LowLowLowUnclearLowLowLowLowMaly 2021 (108)LowLowUnclearUnclearLowLowUnclearMahovic 2013 (109)HighLowLowLowLowLowLowLowMa 2019 (110)UnclearLowLowLowLowLowLowLowLuger 2017(111)LowLowLowLowLowLowLowLowLuger 2013 (113)HighLowLowLowLowLowLowUnclearLombart 2016 (114)HighLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLowLiu 2020 (118)HighLowLowLowLowLowLowLowLowLiu 2020 (119)UnclearLowLowLowLowLowLowLowLiu 2020 (119)HighLow <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Matsumori 2002 (107)LowLowLowUnclearLowLowLowLowMaly 2021 (108)LowLowUowUnclearUnclearLowLowUmclearMahovic 2013 (109)HighLowLowLowLowLowLowLowUmclearMa 2019 (110)UnclearLowLowLowLowLowLowLowLowLager 2017 (111)LowLowLowLowLowLowLowLowLowLug 2020 (112)HighLowLowLowLowLowLowUmclearUnclear 2016 (114)HighLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLiu 2016 (114)HighLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLi 2016 (120)HighLowLowLowLowLowLowLowLi 2016 (121)HighLowLowLowLowLowLowLowLi 2020 (117)HighLowLowLowLowLowLowLowLi 2020 (117)HighLowLowLowLowLowLowLowLi 2020 (119)U		Low	Low	Unclear	Unclear	Low	Low	Unclear
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Matsuo 2013 (106)	Low	Low	Low		Low	Low	Low
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Matsumori 2002 (107)	Low	Low	Low	Unclear	Low	Low	Low
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maly 2021 (108)	Low	Low	Unclear	Unclear	Low	Low	Unclear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mahovic 2013 (109)	High		Low		Low	Low	Low
Luger 2017(11)LowLowLowLowLowLowLowLowLu 2020 (112)HighLowLowLowLowLowLowLowLowLong 2013 (113)HighLowUnclearUnclearLowLowUnclearLlombart 2016 (114)HighLowLowLowLowLowLowUnclearLiu 2015 (115)LowLowLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLowLiswati 2009 (118)HighLowLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLaskowitz 2009 (123)HighLowLowLowLowLowLowLowLowLaskowitz 2009 (124)LowLowLowLowLowLowLowLowLowKokacinska 2005 (126)HighLowLowLowLowLowLowLowLowLowKodai 2013 (127)HighLowLowLowLowLowLowLowLowLowLowLowKodai 2012 (128)		<u> </u>						
Lu 2020 (112)HighLowLowLowLowLowLowLowLowLong 2013 (113)HighLowUnclearUnclearLowLowUnclearLowUnclearLlombart 2016 (114)HighLowLowLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLowLowLowLi 2020 (119)UnclearLowLowLowLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowLowLowLowLowLowLowLowLowLowLowLowKokacinska 2007 (125)HighLowLo								
Long 2013 (113)HighLowUnclearUnclearLowLowUnclearLlombart 2016 (114)HighLowLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLiswati 2009 (118)HighLowLowLowLowLowLowLowLi 2021 (119)UnclearLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLowLaskowitz 2006 (123)HighLowLowLowLowLowLowLowLowKokcinska 2007 (125)HighLowLowLowLowLowLowLowLowKodali 2013 (127)HighLowLowLowLowLowLowLowLowKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclear <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Llombart 2016 (114)HighLowLowLowLowLowLowLowLowLiu 2015 (115)LowLowLowLowLowLowLowLowLowLowLiu 2017 (116)HighLowLowLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLowLiswati 2009 (118)HighLowLowLowLowLowLowLowLi 2021 (119)UnclearLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLarga 2006 (123)HighLowLowLowLowLowLowLowLaskowitz 2009 (124)LowLowLowLowLowLowLowLowKokacinska 2007 (125)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowLowLowLowLowLowLowKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclear<	<u>````</u>	0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Liu 2017 (116)HighLowLowLowLowLowLowLowLiu 2020 (117)HighLowLowLowLowLowLowLowLowLiswati 2009 (118)HighLowLowLowLowLowLowLowLowLi 2021 (119)UnclearLowLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowLowLowLowLowLowUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012HighLowLowLowLowHighLowLowLowLowUnclear </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Liu 2020 (117)HighLowLowLowLowLowLowLowLowLiswati 2009 (118)HighLowLowLowLowLowLowLowLowLowLi 2021 (119)UnclearLowLowLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowLowHighLowLowLowLow								
Liswati 2009 (118)HighLowLowLowLowLowLowLowLi 2021 (119)UnclearLowLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowLowHighLowLowLow								
Li 2021 (119)UnclearLowLowLowLowLowLowLowLi 2015 (120)HighLowLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowLowHighLowLowLow								
Li 2015 (120)HighLowLowLowLowLowLowLowLi 2018 (121)LowLowLowLowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowKokocinska 2005 (126)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLowLowLow		0						
Li 2018 (121)LowLowLowLowLowLowLowLeung 2014 (122)LowLowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowKokocinska 2005 (126)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLowLow								
Leung 2014 (122)LowLowLowLowLowLowLowLaterza 2006 (123)HighLowUnclearUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowLowKokocinska 2005 (126)HighLowLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearUnclearUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLowLowLow		<u> </u>						
Laterza 2006 (123)HighLowUnclearUnclearUnclearLowUnclearLaskowitz 2009 (124)LowLowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowLowKokocinska 2005 (126)HighLowLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow								
Laskowitz 2009 (124)LowLowLowLowLowLowLowLowLowKokocinska 2007 (125)HighLowLowLowLowLowLowLowLowKokocinska 2005 (126)HighLowLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow								
Kokocinska 2007 (125)HighLowLowLowLowLowLowLowLowKokocinska 2005 (126)HighLowLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow		U						
Kokocinska 2005 (126)HighLowLowLowLowLowLowLowKodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow								
Kodali 2013 (127)HighLowUnclearUnclearUnclearLowUnclearKodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow	Kokocinska 2007 (125)	0					Low	
Kodali 2012 (128)HighLowUnclearUnclearUnclearLowUnclear"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow	Kokocinska 2005 (126)	High	Low	Low	Low	Low	Low	Low
"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow	Kodali 2013 (127)	High	Low	Unclear	Unclear	Unclear	Low	Unclear
"Kochanowski 2012UnclearUnclearUnclearUnclearUnclearUnclear(129)"HighLowLowLowHighLowLow	Kodali 2012 (128)	High	Low	Unclear	Unclear	Unclear	Low	Unclear
(129)" High Low Low Low High Low Low		<u> </u>						
I Navaici 2011 (130) I LOW I LOW I Unclear I Unclear I Low I Low I Unclear	Kavalci 2011 (130)	Low	Low	Unclear	Unclear	Low	Low	Unclear
Kavarer 2011 (150)LowLowUnclearLowLowUnclearKatsanos 2017 (131)LowLowUnclearLowLowUnclear								
Katsalos 2017 (131)LowLowOncleanOncleanLowLowOncleanKashyap 2009 (132)HighLowLowLowLowLowLow								

	-	-		-			Γ-
Kara 2014 (133)	Low	Low	Low	Low	Low	Low	Low
Kalra 2021 (134)	Low	Low	Low	Low	Low	Low	Low
Kalani 2020 (135)	Low	Low	Low	Low	Low	Low	Low
Jin 2017 (136)	High	Low	Low	Low	Low	Low	Low
Jiang 2011 (137)	High	Low	Low	Low	Low	Low	Low
Jia 2015 (138)	Low	Low	Low	Low	Low	Low	Low
Ji 2016 (139)	Unclear	Low	Low	Low	Low	Low	Low
Inoue 2019 (140)	Low	Low	Low	Low	Low	Low	Low
Iltumur 2006 (141)	High	Low	Low	Low	Low	Low	Low
Herisson 2010 (142)	Low	Low	Low	Low	Low	Low	Low
Han 2012 (143)	High	Low	Low	Low	Low	Low	Low
Gunduz 2008 (144)	High	Low	Low	Low	Low	Low	Low
Gunaydin 2014 (145)	Low	Low	Low	Low	Low	Low	Low
Glickman 2011 (146)	High	Low	Low	Low	Low	Low	Low
"Giannopoulos 2008	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
(147)"	High	Low	Low	Low	Low	Low	Low
Garlichs 2003 (148)	High	Low	Low	Low	Low	Low	Low
Foerch 2012 (149)	Low	Low	Low	Low	Low	Low	Low
Foerch 2006 (150)	Low	Low	Low	Low	Low	Low	Low
Fiszer 1998 (151)	High	Low	Low	Low	Low	Low	Low
Fassbender 1997 (152)	Low	Low	Low	Low	Low	Low	Low
Fang 2018 (153)	Low	Low	Unclear	Unclear	Low	Low	Unclear
Ewida 2021 (154)	Low	Low	Low	Low	Low	Low	Low
Ekingen 2017 (155)	Low	Low	Unclear	Unclear	Low	Low	Unclear
Dvorak 2009 (156)	Low	Low	Low	Low	Unclear	Low	Low
Duan 2015 (157)	Low	Low	Low	Low	Low	Low	Low
De Marchis 2018 (158)	Low	Low	Low	Low	Low	Low	Low
Dassan 2012 (159)	Low	Low	Low	Low	Low	Low	Low
Dambinova 2003 (160)	High	Low	Low	Low	Low	Low	Low
Dambinova 2012 (161)	Low	Low	Low	Low	Low	Low	Low
Cheng 2018 (162)	Low	Low	Low	Low	Low	Low	Low
Chen 2018 (163)	Low	Low	Low	Low	Unclear	Low	Low
Cavrak 2021 (164)	High	High	Low	Low	Low	Low	Low
Cano 2003 (165)	Low	Low	Low	Low	Low	Low	Low
Cakmak 2014 (166)	Low	Low	Low	Low	Low	Low	Low
Büttner 1997 (167)	High	Low	Low	Low	High	Low	Low
Bustamante 2021 (168)	Low	Low	Low	Low	Low	Low	Low
Bustamante 2017 (169)	Low	Low	Low	Low	Low	Low	Low
Bolayir 2019 (170)	Low	Low	Low	Low	Low	Low	Low
Bibl 2012 (171)	Unclear	Low	Low	Low	Low	Low	Low
Barr 2010 (172)	High	Low	Low	Low	Low	Low	Low
"Azarpazhooh 2010	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
(173)"	High	Low	Low	Low	Low	Low	Low
Atik 2016 (174)	Low	Low	Low	Low	Low	Low	Low
"Alvarez-Perez 2011	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
(175)"	Low	Low	Unclear	Unclear	Low	Low	Unclear
Allard 2004 (176)	Low	Low	Low	Low	Low	Low	Low
Allard 2005 (177)	Low	Low	Low	High	Low	Low	Low
Algin 2019 (178)	Low	Low	Low	Low	Low	Low	Low
Algawwam 2021 (179)	Low	Low	Unclear	Unclear	Low	Low	Unclear
Ahn 2011 (180)	*	Low	Low	Low	Low	Low	Low
	Low	2011				Low	Low
Sadik 2021 (181)	Low	Low	Low	Low	Low	LOW	D011
			Low Low	Low Unclear	Low	Low	Unclear
Sadik 2021 (181)	Low	Low					
Sadik 2021 (181) Abe 2020 (182)	Low Low	Low Low	Low	Unclear	Low	Low	Unclear
Sadik 2021 (181) Abe 2020 (182) catana 2023 (183)	Low Low low unclear	Low Low low	Low low	Unclear low	Low low	Low low	Unclear low
Sadik 2021 (181) Abe 2020 (182) catana 2023 (183) Ding 2023(184)	Low Low low	Low Low low unclear	Low low unclear	Unclear low unclear	Low low unclear	Low low unclear	Unclear low unclear

Table 2: Th	Table 2: The attributes of the 190 studies that were considered are displayed in the Supplementary												
Supplement ary Table 2: Concise characteristi cs of 190 included studies													
Study ID	Country	Design	Comparis on	Settin g	Referen ce	Specimen	Sampli ng time	Omics	Biomarkers				
Zhou 2021 (1)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	24h	transcripts	miR-124				
Zhang 2022 (2)	China	Case control	IS vs. Controls	Not stated	Not stated	serum	9h	proteins	JKAP				

		study							
Yang 2022 (3)	China	Case control study	IS vs. Controls	Not stated	Not stated	plasma; exosome	12h	Transcript o mics	circ_0112036, circ_0066867, circ_0093708, circ_0041685
Turek- Jakubowska 2022 (4)	Poland	Case control study	IS vs. Controls	Neuro lo gy ward	СТ	plasma	24h	Proteomic s	Alpha-1B-glycoprotein
Tian 2022 (5)	China	Case control study	IS vs. Controls	Neuro - vascul a r centre	Not stated	whole blood	6h	Transcript o mics	IncRNA NR_120420
Rahmati 2021 (6)	Iran	Case control study	IS vs. Controls	Not stated	MRI	serum	24h	transcripts ; proteins	miR-210, HIF-1a
Li 2021 (7)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	24h	proteins; metabolite s	uric acid, CRP, NT-proBNP
Induruwa 2022 (8)	UK	Prospectiv e study	IS vs. Controls; HS vs. Controls; Total stroke vs. controls	ED	Not stated	whole blood; platelet	8h	proteins; platelet	IS vs. control: GPVI-dimer, HS vs. control: GPVI-dimer, total stroke vs. control: GPVI, GPVI-dimer, platelet P-selectin
Gawryś 2022 (9)	Poland	Case control study	IS vs. Controls	Neuro lo gy ward	СТ	platelet	24h	Proteomic s; platelet	Beta-amyloid protein A4, Amyloid- like protein 2, coactosin-like protein, thymidine phosphorylase 4 (TYMP-4), interferon regulatory factor 7 (IRF7), vitamin K-dependent protein S, histone proteins (H2A type 1 and 1-A, H2A types 2B and J, H2Av, -z, and -x), platelet basic protein
Cho 2022 (10)	not stated	Case control study	IS vs. Controls	ED	Not stated	PBMCs	24h	PBMC number	NK cells, CD14+ monocytes
Intiso 2004 (11)	Italy	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	CT; MRI	serum	24h	proteins	TNFa
Perini 2001 (12)	Italy	Prospectiv e study	IS vs. Controls	Stroke Unit	СТ	serum	12h	proteins	IL-6, IL-10
Pedersen 2004 (13)	Norway	Case control study	IS vs. Controls	Not stated	CT; MRI	plasma	24h	proteins	CRP
Nayak 2011 (14)	India	Case control study	IS vs. Controls	Not stated	СТ	serum	24h	proteins	IMA
Senes 2007 (15)	Turkey	Prospectiv e study	IS vs. Controls	Not stated	Not stated	serum	24h	metabolite s	nitrite, nitrate, IMA, TBARS
Feng 2019 (16)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	plasma	24h	transcripts	IncRNA ANRIL
Blann 1999 (17)	UK	Prospectiv e study	IS vs. Controls	Not stated	Not stated	serum; plasma	12h	proteins	ICAM-1, E-selectin, VCAM-1, vWF
Shyu 1997 (18)	China (Taiwan)	Prospectiv e study	IS vs. Controls	ED	СТ	serum	24h	proteins	ICAM-1, E-selectin
Liu 2015 (19)	China	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	serum	24h	proteins	CXCL12
Supanc 2011 (20)	Croatia	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	CT	serum	24h	proteins	ICAM-1, VCAM-1
Wunderlich 2005 (21)	Germany	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	СТ	serum	24h; 18h; 12h; 6h; 3h; 2h; 1h	proteins	B-FABP, H-FABP
Hu 2016 (22)	China	Case control study	IS vs. HS	Not stated	Not stated	whole blood	12h	metabolite s	Asn, C5:1, Arg/Orn, Val/Phe, (C0 +C2 + C3 + C16 + C18:1)/Cit
Uno 2003 (23)	Japan	Prospectiv e study	IS vs. Controls	depart m ent of neurol o gical surger y	CT; MRI	plasma	24h	proteins	OxLDL
Sun 2019 (24)	Germany	Prospectiv e study Prospectiv	IS vs. Controls	ED	CT; MRI	serum	24h	Metabolo mi cs	tetradecanedioate, hexadecanedioate
Song 2006 (25)	Korea	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	plasma	24h	proteins	IL-6,PAI-1,PAP
Zitnanova 2016 (26)	Slovakia	Case control	IS vs. Controls	Neuro lo gy	СТ	plasma	24h	proteins	lipid peroxides, superoxide dismutase activity, catalase activity,

		study		ward					paraoxonase activity, glutathione peroxide activity
Can 2015 (27)	Turkey	Prospectiv e	IS vs. Controls	ED	MRI	serum	12h	proteins	MBP, IMA
Kimberly 2013 (28)	USA	study Prospectiv e study +animal experiment study	IS vs. Controls	ED	MRI	plasma	2h; 9h	Metabolo mi cs; targeted	BCAA (leucine, isoleucine, valine), carnitine, threonine, histidine, glucose, methionine, glycine, proline, lysine, cysteamine, uridine, 5'- adenosylhomocysteine, creatinine, N-carbamoyl- beta-alanine, cis/trans hydroxyproline, asparagine
Abboud 2007 (29)	France	Prospectiv e study	IS vs. HS; Total stroke vs. TIA	ED	CT; MRI	serum	3h	proteins	IMA
Tang 2006 (30)	USA	Case control study	IS vs. Controls	Not stated	СТ	whole blood	24h; 5h; 3h	Genomics	Hox 1.11 gene, CKAP4 gene, S100A9 gene, MMP9 gene, S100P gene, F5 gene, FPR1 gene, S100A12 gene, RNASE2 gene, ARG1 gene, CA4 gene, LY96 gene, SLC16A6 gene, HIST2H2AA gene, ets-2 gene, BCL6 gene, PYGL gene, NPL gene
Rainer 2007 (31)	China	Prospectiv e study	IS vs. HS	ED	CT; MRI	plasma	24h	proteins; cfDNA	cfDNA, S100
Tiedt 2018 (32)	Germany	Prospectiv e study	IS vs. Controls	ED	MRI	serum	24h	proteins	NfL
Zhu 2019 (33)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	РВМС	24h	transcripts	PBMC circ-DLGAP4
Zhu 2018 (34)	China	Case control study	IS vs. Controls	Not stated	MRI	leukocytes	24h	transcripts	lncRNA MIAT
Zhou 2016 (35)	China	Prospectiv e study	IS vs. HS	ED	СТ	plasma	6h	proteins	S100B
Zhou 2018 (36)	China	Case control study	IS vs. Controls	Not stated	MRI	serum; exosome	24h	transcripts	miR-134
Zhou 2022 (37)	China	Case control +animal study	IS vs. Controls	Neuro lo gy depart m ent	CT; MRI	Serum (small extracellul ar vesicles)	24h	Transcript o mics	miR-9-3p, miR-124-3p, miR-143- 3p, miR-93-5p
Zhao 2016 (38)	China	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	Not stated	serum	24h	proteins	Apolipoprotein A1-Unique Peptide (APOA1-UP)
Zhao 2017 (39)	China	Case control study	IS vs. Controls; HS vs. Controls	ED, neurol o gy depart m ent	CT; MRI	plasma; neutrophil s, lymphocyt es	6h	transcripts	miR-99a-5p
Zhao 2016 (40)	China	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	MRI	plasma	24h	transcripts	miR-335
Zhang 2017 (41)	China	Case control study	IS vs. HS; IS vs. Controls; HS vs. Controls	Not stated	CT; MRI	dried blood spot	12h	Metabolo mi cs	IS vs. control: C22, C5, C3DC, C4, C5DC/C5-OH, C3DC/C10, C14:2, C10:2, (0+2+3+16+18:1)/Cit, Arg, Pro HS vs. control: C16-OH/C16, C16:1- OH, C10, C5/C3, C12, C18, C18:1, C4DC, Val/Phe, C16, Arg, Thr IS vs. HS: C4-OH, C5DC, C14, C16- OH, Tyr/Cit, Val/Phe, C5DC,/C5-OH, C5DC/C16, C18-OH, (0+2+3016+18:1)/Cit, C3/Met
Zhang 2020 (42)	China	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	plasma; endothelia l micro- vesicles	24h	transcripts ; endothelia 1 microvesi cle s	EMVs, EMVs-miR-155
Zaremba 2006 (43)	Poland	Case control study	IS vs. Controls	Not stated	СТ	serum	24h	proteins	IL-12
Yuan 2020 (44)	China	Case control study + animal	IS vs. Controls	Neuro lo gy ward	CT; MRI	plasma	24h	proteins	GMFB

		experiment							
Yigit 2017 (45)	Turkey	study Case control study	IS vs. Controls; HS vs. Controls	ED	Not stated	serum	24h	proteins	UCH-L1
Yang 2016 (46)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	plasma	24h	transcripts	miR-107, miR-128b, miR-153
Xiong 2015 (47)	China	Prospectiv e study	IS vs. HS	Not stated	CT; MRI	serum	6h	proteins	GFAP
Wu 2020 (48)	China	Case control study	IS vs. Controls	Neuro lo gy ward	CT; MRI	plasma	6h	transcripts	miR-99b
Williams 2007 (49)	USA	Prospectiv e study	IS vs. SM	ED	MRI	plasma	24h	Endotheli al microparti cl es (EMPs)	number of Endothelial microparticles
Wang 2017 (50)	China	Case control study	IS vs. Controls	ED	CT; MRI	serum	6h	transcripts	miR-221-3p, miR-382-5p
Wang 2014 (51)	China	Prospectiv e study	IS vs. Controls	Not stated	MRI	plasma	24h	transcripts	miR-106b-5P, miR-4306, miR- 320e, miR-320d
Wang 2018 (52)	China	Case control study	IS vs. Controls	Neuro lo gy ward	CT; MRI	plasma; exosome	6h	transcripts	miR-21-5p, miR-30a-5p
Wang 2017 (53)	China	Case control study + animal experiment study	IS vs. Controls	Not stated	MRI	plasma; lymphocyt es	3h	transcripts	IncRNA H19
Walsh 2016 (54)	USA	Case control study	IS vs. HS; IS vs. Controls; HS vs. Controls	ED, neurol o gy depart m	Not stated	plasma	12h	proteins	Apo A-I, Apo C-I, Apo C-III, MMP-3, MMP-9, paraoxonase-1
Vukasovic 2006 (55)	Croatia	Case control study	IS vs. Controls	Not stated	СТ	serum	24h	proteins	MMP-2, TIMP-2
von Recum 2015 (56)	Germany	Prospectiv e study	IS vs. TIA	ED	Not stated	serum	4.5h	proteins	copeptin
Unden 2009 (57)	Sweden	Prospectiv e study	IS vs. HS	Not stated	СТ	not stated	24h	proteins	S100B, NSE, GFAP, APC-PCI
Tunç 2018 (58)	Turkey	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	serum	24h	proteins	SPA
Tiedt 2017 (59)	Germany	Prospectiv e study	IS vs. TIA; IS vs. Controls	ED	CT; MRI	plasma	24h	Transcript o mics	miR-125a-5p, miR-125b-5p, miR- 143-3p
Tiedt 2020 (60)	Germany	Prospectiv e study	IS vs. SM; IS vs. Controls	ED	CT; MRI	serum	24h	Metabolo mi cs	asymmetrical dimethylarginine (ADMA), symmetrical dimethylarginine (SDMA), pregnenolone sulphate, adenosine
Tian 2015 (61)	China	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	serum	24h	proteins	PCT, hsCRP, HCY
Tian 2016 (62)	China	Prospectiv e study	IS vs. Controls	Cerebr o vascul a r Diseas e s Centre	Not stated	plasma	6h	Transcript o mics	miR-16
Taema 2014 (63)	Egypt	Prospectiv e study	IS vs. HS	Not stated	СТ	serum	24h	proteins	CRP
Stejskal 2011 (64)	Czech Republic	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	3h	proteins	VILIP-1
Stanca 2015 (65)	Romania	Prospectiv e study	IS vs. HS	ED	СТ	serum	24h; 12h	proteins	GFAP, antibodies against NMDA receptor subunit NR2
Stamova 2010 (66)	USA	Case control study	IS vs. Controls	Not stated	Not stated	whole blood	24h; 5h; 3h	Genomics	GENES (ABCA1, PGM5, CCDC144C /// LOC100134159, LECT2, SHOX, TBX5, SPTLC3, SNIP, RBMS3, P704P, THSD4, FAT3, SNRPN, GLYATL1, GADL1, DKFZP434L187, CXADR, OVOL2, RNF141, CLEC4E, ELL2, SPIB, BXDC5, UNC5B, TIMP2, ASTN2, FLJ35934, ANKRD28,

									CCDC144A, TIMM8A, ALDOAP2, LDB3, PTPRD, LOC729222 ///PPFIBP1, CCRL1, HNRNPUL2, FCRL4, ELAVL2, PRTG, DLX6, FOXA2, SCD5, GABRB2, GYPA, OSBPL1A, PHTF1, CKLF, CKLF, RRAGD, CLEC4E, CKLF, FGD4, CPEB2, LOC100290882, UBXN2B, ENTPD1, BST1,LTB4R,F5,IFRD1,KIAA031 9, CHMP1B, MCTP1, VNN3, AMN1, LAMP2, FCHO2, ZNF608, REM2, QKI, RBM25, FAR2, ST3GAL6, HNRNPH2, GAB1, UBR5, VAPA, THBD,LOC283027, LOC100129488, RPL22, MCTP1, SH3GL3)
Stamova 2019 (67)	USA	Case control study	IS vs. HS; IS vs. Controls; HS vs. Controls	Not stated	CT; MRI	not stated	24h	Transcript o mics	HS vs. control: 489 transcripts; IS vs. control: 396 transcripts; IS vs. HS: 256 transcripts
Song 2019 (68)	USA	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	24h	Proteomic s	clusterin, cystatin C (CST3)
Simats 2020 (69)	Spain	Case control study + animal	IS vs. SM	ED	Not stated	plasma	6h	Transcript o mics; Proteomic s	CTNND2
		experiment study							
Simats 2018 (70)	Spain	Case control study+ animal experiment study	IS vs. Controls	Not stated	Not stated	plasma	6h	Proteomic s; proteins	СКВ, СМРК
Simats 2018 (71)	Spain	Prospectiv e study + animal experiment study	IS vs. Controls	ED	Not stated	serum	6h; 4.5h	proteins	CCL23, CCL9
Sharma 2014 (72)	USA	Prospectiv e study	IS vs. HS; IS vs. SM; Total stroke vs. SM	ED	CT; MRI	plasma	24h	proteins	eotaxin, epidermal growth factor receptor, S100A12, metalloproteinase inhibitor-4 (TIMP-4), prolactin
Sharma 2015 (73)	India	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	24h	Proteomic s	vWF, ADAMTS13, S100A7
Shaker 2020 (74)	Iraq	Case control study	IS vs. Controls	Not stated	СТ	plasma	24h	proteins	GPBB
Sepramania m 2014 (75)	Singapor e	Prospectiv e study+ animal experiment study	IS vs. Controls	Not stated	CT; MRI	whole blood	24h	Transcript o mics	miR-125b-2*, miR-27a*, miR- 422a, miR-488, miR-627
Sayan 2016 (76)	Turkey	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	СТ	plasma	24h	proteins	BNP
Rozanski 2017 (77)	Germany	Prospectiv e study	IS vs. HS	Stroke Emerg e ncy Mobil e	СТ	plasma	3h; 1h	proteins	GFAP
Roudbary 2011 (78)	Iran	Cross sectional study	IS vs. HS	Neuro lo gy ward	СТ	serum	24h	proteins	hsCRP
Rico Santana 2014 (79)	Spain	Case control study	IS vs. Controls	ED, neurol o gy depart m ent	CT; MRI	serum	6h	Proteomic s	2155-Da peptide
Richard 2016 (80)	France	Case control study	IS vs. Controls	Not stated	CT; MRI	plasma	24h; 6h; 3h	proteins	PRDX1
Reynolds 2003 (81)	USA	Case control study	IS vs. HS; IS vs. TIA;	ED	CT; MRI	serum	24h; 12h; 6h; 3h	proteins	S100B, BNGF, vWF, MMP9, MCP-1

	[r	10			1	1	r	
Ren 2016 (82)	China	Case control study	IS vs. Controls; HS vs. TIA; HS vs. Controls; Total stroke vs. controls IS vs. HS; IS vs. Controls; HS vs.	ED	CT; MRI	serum	24h; 4.5h	proteins	UCH-L1, GFAP
Ranga 2016 (83)	India	Cross sectional	Controls IS vs. Controls	Not stated	CT; MRI	serum	24h	proteins	CEA
Rahmati 2020 (84)	Iran	study Case control	IS vs. Controls	Neuro lo gy	CT; MRI	serum	12h	transcripts ; proteins	\$100B, miR-602
Qi 2021 (85)	China	study Case control study	IS vs. Controls	Not stated	CT; MRI	serum; extracellul ar vesicle (EV)- derived	6h	transcripts	miR-124-3p
Peycheva 2021 (86)	Bulgaria	Cross- sectional study	IS vs. Controls	Neuro lo gy ward	CT	serum	24h	proteins	fibrinogen
Perovic 2017 (87)	Croatia	Case control study	IS vs. Controls	Neuro lo gy ward	СТ	serum	24h	proteins	resistin, copeptin
Penn 2018 (88)	Canada	Prospectiv e study	IS vs. Controls	ED	CT; MRI	plasma	24h	Proteomic s	E-selectin, Apolipoprotein C-I, Calponin, Coagulation factor XII, Clusterin, CRP, IGF-1, Complement component 4b (C4b and C4a), Serum paraoxonase/aryl esterase 1(Paraoxonase- PON1), Prothrombin/thrombin, Plasminogen/plasmin/angiostatin, Vitamin K-dependent protein S (Protein S), Serum paraoxonase/lactonase 3 (Paraoxonase- PON3), Vitamin K- dependent protein C (Protein C), Antithrombin III, Vitamin K- dependent protein Z (Protein Z), Coagulation factor V, Apolipoprotein D, Coagulation factor XI, Insulin-like growth factor-binding protein 3 (IBP 3), L- selectin, Plasma protease C1 inhibitor, IL-6, S100A12, Fatty acid binding protein 3 (FABP3), Guanylate cyclase A(NPR1) (ANPR1), Epidermal growth factor receptor (EGFR), Platelet endothelial cell adhesion molecule (PECAM 1), Prolactin
Park 2013 (89)	Korea	Prospectiv e study	IS vs. SM	Not stated	CT; MRI	plasma	24h	proteins	H-FABP, S100B
Park 2018 (90)	USA	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	plasma	12h	proteins	GPBB
Pan 2020 (91)	China	Case control study	IS vs. Controls	Not stated	Not stated	platelet	7.5h	Genomics	EGR2 gene
Palm 2018 (92)	Germany	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	24h	proteins	MMP-8, MPO, TIMP-1
Oraby 2019 (93)	Egypt	Case control study	IS vs. Controls	Neuro lo gy ward	CT; MRI	serum	24h	proteins	thioredoxin
O'Connell 2019 (94)	USA	Case control study	IS vs. SM IS vs. HS;	ED	CT; MRI	whole blood	24h	genes; leukocyte count	PLXDC2 gene, STK3 gene, ANTXR2 gene, KIF1B gene, CD163 gene, PDK4 gene, CTSZ gene, GRAP gene, MAL gene, ID3 gene NVAVAODENLAG,
O'Connell 2019 (95)	USA	Case control study	IS vs. HS; Total stroke vs. SM ; Other: HS vs. IS+SM	ED	CT; MRI	whole blood	12h	Proteomic s	NVAVAQDENLAG, NNYWANVASGLG, QSLKPKGVALSG, GASVHDGVALSG, GEYFRWNWDSVA,APFGQKDV ALGL, GDRRPLGVALSG,KGQRGYHL

O'Connell 2016 (96) O'Connell	USA	Case control study Case control	IS vs. SM; IS vs. Controls IS vs. SM	ED	MRI CT;	whole blood	4.5h; 5.3h	Genomics cell free	KHDA, AEQREFNKHLSA,PEFRELSKH DVA, PKPHGFPGQEYV,KPEKLNGVA LSG, NSLKENGVALSG,VLGPRHEPD SGA, EKLYYHDSQEKH,AWQKSKGV ALSG, QRPDPKDGQAKD ANTXR2 gene, STK3 gene, PDK4 gene, CD163 gene, MAL gene, GRAP gene, ID3 gene, CTSZ gene, KIF1B gene, PLXDC2 gene
2017 (97) O'Connell 2017 (98)	USA	control study Case control study	IS vs. SM IS vs. Controls	ED public platfor m	MRI Not stated	plasma whole blood	4.5h 24h; 5h; 3h	DNA	cfDNA ANTXR2 gene, STK3 gene, PDK4 gene, CD163 gene, MAL gene, GRAP gene, ID3 gene, CTSZ gene, KIF1B gene, PLXDC2
O'Connell 2020 (99)	USA	Case control	IS vs. Controls	ED	CT; MRI	plasma	24h	proteins	gene NfL, Tau
Nielsen 2020 (100)	Denmark	study Prospectiv e study	IS vs. TIA; IS vs. Controls	Neuro lo gy ward	CT; MRI	plasma	8h	proteins	NfL, VEGF-A, VCAM-1, ICAM-1, IL-6, S100B, E-selectin
Nguyen 2020 (101)	Netherlan d	Prospectiv e study	IS vs. HS; IS vs. SM; IS vs. Controls; HS vs. SM	ED	СТ	plasma	6h	Transcript o mics	tRNA-TyrGTA, tRNA-ThrCGT, tRNA-ValCAC
Nahan 2017 (102)	USA	Case control study	IS vs. HS; IS vs. Controls; HS vs. Controls	ED	Not stated	plasma	12h	Proteomic s	IS vs. control (As, Co, Fe, Li, Sr, U, Se, Cd), HS vs. control (Ag, Al, As, Co, Ni, U, Zn, Fe, Sr, Cd, Pb, Se); HS vs. IS (Ag, Co, Fe, Al, As, Li, Ni, U, W), IS special markers (calpain-15, titin Isoform 3, tropomyosin alpha-4 chain); HS special markers (bestrophin-3, GIRK-1, TTBK1, CAB3)
Montaner 2012 (103)	Spain	Prospectiv e study	IS vs. HS	ED	СТ	plasma	6h	proteins	S100B, sRAGE
Menon 2018 (104)	India	Prospectiv e study	IS vs. Controls	Not stated	Not stated	serum	24h; 1h	proteins	IMA
Mattila 2021 (105)	Finland	Prospectiv e study	IS vs. HS	ED	Not stated	plasma	3h; 1h	proteins	GFAP
Matsuo 2013 (106)	Japan	Prospectiv e study	IS vs. Controls	Not stated	CT; MRI	plasma	24h	proteins	VEGF
Matsumori 2002 (107)	Japan	Case control study	IS vs. Controls	Not stated	СТ	serum	24h	proteins	HGF
Maly 2021 (108)	Czech Republic	Cross- sectional study	IS vs. Controls	Not stated	Not stated	plasma	4.5h	Metabolo mi cs; lipidomics	FA (20:2), FA (20:3), FA (20:4), FA (20:5), FA (22:4), FA (22:5), FA (22:6), FA (16:1), FA (17:1), AHFA (14:0/16:2), FAHFA (16:1/18:3), FAHFA (18:1/20:3), FAHFA (18:2/20:4), FAHFA (20:4/18:3), LPC (20:5), LPC (22:5), LPC (22:6), LPE (18:2), LPE (20:4), LPE (22:6), LPI (18:1), LPI (18:2), TG (14.0_16.1_20.3), TG (16:0_18:2_18:3), TG (16:0_18:2_22:6), TG (17:1_17:2_19:0)
Mahovic 2013 (109)	Croatia	Prospectiv e study	IS vs. Controls	Not stated	СТ	serum	24h	proteins	soluble Fas/APO 1 (sFas/APO 1)
Ma 2019 (110)	China	Case control study	IS vs. Controls	ED + Neuro lo gy depart m ent	CT; MRI	plasma	6h	transcripts	miR-93
Luger 2017 (111)	Germany	Retrospecti ve study	IS vs. HS; Other: HS vs. IS+SM	ED + Neuro lo gy depart	CT; MRI	serum	бh	proteins	GFAP

				m ent					
Lu 2020 (112)	China	Case control study +	IS vs. Controls	Not stated	MRI	whole blood	24h; 3h	Transcript o mics	circ-PHKA2, circ-BBS2
Long 2013 (113)	China	Cross- sectional study	IS vs. Controls	Not stated	Not stated	plasma	24h	transcripts	miR-30a, miR-126, let-7b
Llombart 2016 (114)	Spain	Retrospecti ve study	IS vs. HS	ED	CT	plasma	6h	proteins	RBP4, GFAP
Liu 2015 (115)	China	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	MRI	serum	24h	transcripts ; proteins	miR-124, miR-9, miR-219, MMP9
Liu 2017 (116)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	9h	Metabolo mi cs	serine, isoleucine, betaine, PC (5:0/5:0), LysoPE (18:2)
Liu 2020 (117)	China	Case control study	IS vs. HS; IS vs. Controls	Neuro lo gy ward	CT; MRI	serum	24h	proteins	Sphingosine 1-phosphate (S1P)
Liswati 2009 (118)	Indonesia n	Case control study	IS vs. HS	Not stated	СТ	plasma	24h	proteins	S100B, MBP
Li 2021 (119)	China	Case control study	IS vs. Controls	Neuro lo gy ward	MRI	serum	24h	proteins	Lp-PLA2
Li 2015 (120)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	24h	Transcript o mics	miR-32-3p, miR-106-5p, miR-532- 5p, miR-1246
Li 2018 (121)	China	Prospectiv e study	IS vs. Controls	ED	CT; MRI	plasma; lymphocyt es , neutrophil s	6h	transcripts ; proteins	miR-424, TNFa, IGF1
Leung 2014 (122)	China	Prospectiv e study	IS vs. HS; IS vs. Controls; HS vs. Controls	ED	CT; MRI	plasma	24h; 6h	transcripts	miR-124-3p, miR-16
Laterza 2006 (123)	USA	Case control study + animal experiment study	IS vs. Controls	Not stated	Not stated	plasma	24h	Genomics ; proteins	VLP-1 gene, VLP-1
Laskowitz 2009 (124)	USA	Prospectiv e study	IS vs. HS; Total stroke vs. SM; Total stroke vs. TIA	Not stated	CT; MRI	serum	24h; 12h; 6h; 3h	proteins	MMP9, BNP, D-dimer, S100B
Kokocinska 2007 (125)	Poland	Case control study	IS vs. Controls	Neuro lo gy ward	СТ	plasma	24h	proteins	S100B, Tissue Polypeptide Antigen (TPA)
Kokocinska 2005 (126)	Poland	Case control study	IS vs. Controls	Neuro lo gy ward	СТ	serum	12h	proteins	S100B
Kodali 2013 (127)	USA	Case control study	IS vs. HS; IS vs. SM; HS vs. SM	ED	Not stated	plasma	12h	Proteomic s	Fibrinogen gamma chain, Protein kinase C eta type, Fibrinogen beta chain, Fibrinogen alpha chain, Complement C3, Methylenetetrahydrofolate reductase, Antithrombin-III, Collagen alpha-1(IV) chain
Kodali 2012 (128)	USA	Case control study	IS vs. HS; IS vs. SM; HS vs. SM	ED	Not stated	plasma	12h	Proteomic s	metalloproteins: Mg, Mn, Cu, Se, Pb, Mo
Kochanows ki 2012 (129)	Poland	Case control study	IS vs. Controls	Neuro lo gy ward	СТ	plasma	24h	proteins	resistin, TNFa
Kavalci 2011 (130)	Turkey	Prospectiv e study	IS vs. HS	ED	Not stated	serum	24h	proteins	BNP, D-dimer, MMP-9, S100B
Katsanos 2017 (131)	Greece	Prospectiv e study	IS vs. HS; HS vs. SM; HS vs. Controls	ED	Not stated	plasma	6h	proteins	GFAP
		Case control	IS vs.	Neuro lo gy	СТ	serum	24h	proteins	ITIH4

(133)		e study	Controls						
Kalra 2021 (134)	Germany	Prospectiv e study	IS vs. HS; HS vs. IS+SM	Neuro lo gy ward	CT; MRI	serum	12h	proteins	GFAP
Kalani 2020 (135)	USA	Prospectiv e study	IS vs. HS	ED	CT; MRI	plasma	24h	Transcript o mics; extracellul ar vesicles	miR-150-3p, miR-4286, miR-132- 3p, miR-30e-3p, miR-21-3p, miR- 27b-3p, miR-342-3p, miR-186-5p, miR-338-3p, miR-5010-5p, miR- 134-5p, miR- 7c-5p, miR-485-5p
Jin 2017 (136)	China	Case control study	IS vs. Controls	Neuro lo gy ward	CT; MRI	plasma	24h	transcripts	miR-126, miR-130a, miR-222, miR-218, miR-185
Jiang 2011 (137)	China	Case control study	IS vs. Controls	Not stated	CT; MRI	serum	6h	Metabolo mi cs	folic acid, cysteine, S-adenosyl- homocysteine, oxidized glutathione, Tetrahydrofolate, Hydroxy eicosatetraenoic acid, Adenosine, Aldosterone, Hydroxy octadecadienoic acid, Deoxocathasterone, Sucrose 6- phosphate, Betanin
Jia 2015 (138)	China	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	MRI	serum	24h	transcripts ; proteins	miR-145, miR-23a, miR-221, hsCRP, IL-6
Ji 2016 (139)	China	Case control study	IS vs. Controls	Neuro lo gy ward	CT; MRI	serum; exosome	24h	transcripts	miR-9, miR-124
Inoue 2019 (140)	Japan	Prospectiv e study	IS vs. HS	Not stated	CT; MRI	serum	24h	proteins	LOX-1
Iltumur 2006 (141)	Turkey	Case control study	IS vs. Controls	NICU	CT; MRI	plasma	24h	proteins	NT-proBNP, troponin I, CK-MB
Herisson 2010 (142)	France	Prospectiv e study	IS vs. HS; Total stroke vs. controls	stroke depart m ent	CT; MRI	serum	4.5h	proteins	IMA, HFABP
Han 2012 (143)	China	Case control study	IS vs. Controls; HS vs. Controls	Not stated	CT; MRI	serum	3h	proteins	IMA
Gunduz 2008 (144)	Turkey	Case control study	IS vs. HS; IS vs. Controls; HS vs. Controls	ED	CT; MRI	serum	24h	proteins	ІМА
Gunaydin 2014 (145)	Turkey	Prospectiv e study	IS vs. Controls	ED	CT; MRI	plasma	12h; 6h	proteins	SCUBE1
Glickman 2011 (146)	USA	Prospectiv e study	IS vs. SM	ED	СТ	plasma	5h	proteins	BNP, MMP-9, D-dimer, S100B, CRP
Giannopoul os 2008 (147)	Greece	Case control study	IS vs. Controls	Not stated	СТ	plasma	24h	proteins	Endothelin-1, CRP, fibrinogen
Garlichs 2003 (148)	Germany	Case control study	IS vs. TIA; IS vs. Controls; TIA vs. Controls	Neuro lo gy ward	СТ	serum; plasma	24h	proteins	platelet CD154, platelet P-selectin, soluble CD154, monocyte CD40, MCP- 1
Foerch 2012 (149)	Germany	Prospectiv e study	IS vs. HS; IS vs. SM; HS vs. SM	Stroke centre	CT; MRI	plasma	4.5h	proteins	GFAP
Foerch 2006 (150)	Germany	Prospectiv e study	IS vs. HS	Stroke unit or NICU	CT; MRI	serum	6h	proteins	GFAP
Fiszer 1998 (151)	Poland	Case control study	IS vs. Controls	Not stated	СТ	whole blood	12h	proteins	CD54, CD11a, CD11b, CD18
Fassbender 1997 (152)	Germany	Case control study	IS vs. Controls	Not stated	СТ	serum	24h; 10h, 8h, 4h	proteins	S100B, NSE
Fang 2018 (153)	China	Prospectiv e study	IS vs. HS; IS vs. SM; IS vs. Controls; HS vs. SM; HS vs. Controls; Total stroke vs.	ED	Not stated	plasma	24h	proteins	S100B, CRP, IL-6, PAI-1, MMP-9, P-selectin, ICAM-1, TNFa, LDL, IL- 10, NO, GFAP

	1	1	1				1	1	
Ewida 2021 (154)	Egypt	Prospectiv e study	IS vs. HS; IS vs. Controls; HS vs. Controls; Total stroke vs. controls	Neuro lo gy ward	CT; MRI	serum	24h	transcripts ; proteins	IS vs. HS(lncRNAs HIF1A-AS2, lncRNAs LINK-A, mRNA HIF1- α, MDA, VEGF), IS vs. control (PI3K, p?Akt, VEGFR2, TIE2), HS vs. control (PI3K, p?Akt, VEGFR2, TIE2), total stroke vs. control(lncRNAs HIF1A-AS2, lncRNAs LINK-A, mRNA HIF1-?, TAC, VEGF, ANG1, BDNF, PI3K, p?Akt, VEGFR2, TIE2)
Ekingen 2017 (155)	Turkey	Prospectiv e study	IS vs. Controls	ED	CT	serum	24h	proteins	Galectin-3, GFAP
Dvorak 2009 (156)	Germany	Prospectiv e study	IS vs. HS	Not stated	CT; MRI	serum	6h; 4h; 3h; 2h	proteins	GFAP
Duan 2015 (157)	China	Prospectiv e study	IS vs. Controls	ED	CT; MRI	serum	24h	proteins	CXCL12
De Marchis 2018 (158)	Switzerla nd	Prospectiv e study	IS vs. TIA; IS+TIA vs. control	ED	MRI	serum	24h	proteins	NfL
Dassan 2012 (159)	UK	Prospectiv e study	IS vs. SM	ED	MRI	serum	24h	proteins	VEGF
Dambinova 2003 (160)	Russia	Prospectiv e study	IS vs. HS; IS vs. TIA; IS vs. Controls; TIA vs. Controls	Neuro lo gy and Neuro s urgery Depart ment	CT; MRI	serum	3h	proteins	NR2A/2B aAb
Dambinova 2012 (161)	USA	Prospectiv e study	IS vs. Controls	ED	CT; MRI	plasma	12h	proteins	NR2 peptide
Cheng 2018 (162)	China	Prospectiv e study	IS vs. Controls	ED	CT; MRI	serum	24h	transcripts	miR-148b-3p, miR-151b, miR-27b- 3p
Chen 2018 (163)	China	Prospectiv e study	IS vs. Controls	Not stated	MRI	serum; plasma	24h	transcripts ; proteins	miR-146b, hsCRP, IL-6
Cavrak 2021 (164)	USA	Case control study	IS vs. TIA; IS vs. SM; TIA vs. SM	ED	MRI	whole blood	24h	cell count and percentag e	neutrophil percentage > 60
Cano 2003 (165)	Venezuel a	Prospectiv e study	IS vs. Controls	ED	СТ	serum	24h	metabolite s	malondialdehyde, nitric oxide
Cakmak 2014 (166)	Turkey	Prospectiv e study	IS vs. Controls	ED	CT; MRI	serum	24h	proteins	IMA, S100B, NSE
Büttner 1997 (167)	Germany	Prospectiv e study	IS vs. Controls	Not stated	СТ	serum	24h; 12h	proteins	S100B
Bustamante 2021 (168)	Spain	Prospectiv e study	IS vs. HS	ED	CT; MRI	plasma	4.5h	proteins	GFAP, RBP-4, NT-proBNP, endostatin
Bustamante 2017 (169)	Spain	Prospectiv e study	IS vs. HS; Total stroke vs. SM	ED	CT; MRI	plasma	6h	proteins	NT-proBNP, IGFBP-3, TNF-R1, GroA, FasL, IL-6, D-dimer, vWF, VAP-1, Endostatin, S100B, Hsc70, Apo CIII, NCAM, MMP-9, bNGF, Caspase-3, NSE, cFn, IL-2RG, IL- 17A
Bolayir 2019 (170)	Turkey	Prospectiv e study	IS vs. Controls	Neuro lo gy ward	CT; MRI	serum	24h	proteins	SCUBE1, hsCRP
Bibl 2012 (171)	Germany	Case control study	IS vs. Controls	Not stated	CT; MRI	plasma	12h	proteins	Abeta1-37, Abeta1-38
Barr 2010 (172)	UK	Case control study	IS vs. Controls	Not stated	MRI	whole blood	24h	Genomics	ARG1 gene, CA4 gene, CCR7 gene, CSPG2 gene, IQGAP1 gene, LY96 gene, MMP9 gene, ORM1 gene, S100A12 gene
Azarpazhoo h 2010 (173)	Iran	Case control study	IS vs. HS; Total stroke vs. controls	Not stated	CT; MRI	serum	24h	proteins	anti-HSP27, hsCRP
Atik 2016 (174)	Turkey	Prospectiv e study	IS vs. Controls; HS vs. Controls	ED	CT; MRI	serum	12h; 3h	proteins	albumin, ischemic modified albumin (IMA), IMA/albumin ratio (IMAR), total antioxidant status, total oxidant status (TOS), oxidative stress index (OSI)
Alvarez- Perez 2011 (175)	Portugal	Prospectiv e study	IS vs. Controls	ED	Not stated	plasma	24h	proteins	fibrinogen, CRP

Allard 2004 (176)	Switzerla nd	Prospectiv e study	IS vs. HS; IS vs. Controls; HS vs. Controls; Total stroke vs. controls	ED	CT; MRI	plasma	6h	Proteomic s	ApoC-I, ApoC-III
Allard 2005 (177)	Switzerla nd	Retrospecti ve study	IS vs. Controls; HS vs. Controls; TIA vs. Controls; Total stroke vs. controls	ED	CT; MRI	plasma	24h	proteins	PARK7, NDKA
Algin 2019 (178)	Turkey	Prospectiv e study	IS vs. Controls	ED	MRI	serum	4h	proteins	BDNF, VILIP-1
Algawwam 2021 (179)	Iraq	Prospectiv e study	IS vs. Controls	Not stated	Not stated	serum	24h	proteins	GPBB
Ahn 2011 (180)	Korea	Prospectiv e study	IS vs. SM	ED	CT; MRI	serum	6h	proteins	IMA index, IMA
Sadik 2021 (181)	Egypt	Prospectiv e study	IS vs. Controls	Not stated	СТ	serum	12h	transcripts	miR-155, JAK2 mRNA, STAT3 mRNA
Abe 2020 (183)	Japan	Prospectiv e study	IS vs. Controls	Not stated	Not stated	whole blood	12h	Transcript o mics	miR-505-5p, miR-1255b-5p, miR- 550b-2-5p, miR-4523, miR-6795- 3p
2023 (184)	China		Ischemic stroke	Not stated	Not stated	Plasma	Not stated	genes	CDK-10; ERCC3; CHEK2
Xie y 2023 (185)	China	Prospectiv e study	Ischemic stroke	Not stated	Not stated	Blood	Not stated	proteins	Lipocalcin-2
Jian 2022 (186)	China	Retrospecti ve study	Acute ischemic stroke with carotid artery plaque	Not stated	Not stated	serum	Not stated	proteins	IgE; LP-PLA2; SAA; LDL- Cholesterol; Total cholesterol; triglycerides; D-dimer
Wu J 2022 (187)	China		Acute ischemic stroke vs controls	Not stated	Not stated	Plasma	Not stated	proteins	Plasma neurofilament light chain
Wang G 2022 (188)	China	Prospectiv e study	Acute ischemic stroke vs controls	Not stated	Not stated	Blood	Day1 ,2,3	genes	Long noncoding RNA intersectin 1- 2
Qian M 2022 (189)	China	Retrospecti ve study	Acute ischemic stroke	Not stated	Not stated		1		Red cell index

DISCUSSION

The study provides a comprehensive updated perspective on diagnostic circulating biomarkers in ischemic stroke. We examined a comprehensive set of 190 publications and combined 518 biomarkers, encompassing genes, transcripts, proteins, and metabolites.

In general, quality assessment suggests a relatively low likelihood of bias and worries about the relevance of the findings in the studies that were included. Nevertheless, there are certain constraints to consider, such as a significant number of ambiguous assessments regarding patient selection and potential bias in the reference standard. Additionally, the relevance of the findings may be questionable for certain research. Due to a significant amount of research lacking sufficient documentation of their methods, it is advisable to approach the results with caution. Subsequent research should prioritize the enhancement of study quality assessment by emphasizing transparent and thorough reporting, in accordance with established

OUADAS. quality evaluation tools like Standardized reporting is crucial for assessing the robustness of evidence when combining diagnostic accuracy studies in systematic reviews. The included studies span publication years from 1997 to 2022, indicating sustained and increasing research interest in this field over the past 25 years. The most recent years have seen a notable rise, with 43 studies published from 2019-2022. This growth likely reflects advances in omics technologies and analytical techniques that enable more comprehensive biomarker discovery and validation.^[15] The studies originated from 30 different countries across 5 continents, demonstrating the global prevalence of stroke and widespread research efforts to develop stroke biomarkers. China has been especially prolific in recent years, contributing 22 of the 43 studies (51%) published from 2019-2022. This reflects the high stroke burden in China and the nation's increasing investment and focus on stroke biomarker research. The included studies represent a diverse set of publication years and countries of origin. The growing number of studies from China in particular, along with steadily increasing publications overall, exemplifies the intensifying global efforts to find clinically useful stroke biomarkers. Continued multinational research across different populations remains crucial.

The studies encompass a diverse range of prospective, retrospective, case-control, and crosssectional designs. The largest group consists of 67 prospective studies. This diversity increases confidence that findings are not simply an artifact of particular study methodologies. Prospective studies were the most common allowing biomarkers to be measured early after stroke onset and correlated with diagnosis and outcomes over time. Casecontrol studies made up 29%, enabling comparisons between stroke patients and healthy controls. Other designs were less common but still provided useful data. The majority of research conducts comparisons between patients with ischemic stroke and individuals who are in good health. While useful for identifying potential biomarkers, such studies lack the context of comparing ischemic to hemorrhagic Additional comparisons strokes. encompass ischemic versus hemorrhagic stroke, stroke versus transient ischemic attack, and so forth. These more clinically relevant comparisons aid in distinguishing stroke subtypes and ruling out mimics, both of which are vital for optimal triage and treatment. More studies directly comparing ischemic and hemorrhagic strokes would be valuable.

The most prevalent biosamples utilized are blood, serum, and plasma. This reflects the minimallyinvasive nature and ease of obtaining blood samples in clinical settings. Some studies additionally utilize whole blood, platelets (potentially leveraging their role in thrombosis and inflammation in stroke), PBMCs (peripheral blood mononuclear cells), and microvesicles. The biomarkers commonly examined encompass proteins (such as S100B, GFAP, NSE, etc.), microRNAs, metabolites (This allowed unbiased discovery of small molecules altered in ischemic stroke, generating hypotheses for further mechanistic investigation), and genes (This enabled examination of differential gene expression related to stroke pathways). Circulating miRNAs have potential as minimally invasive biomarkers given their regulatory roles and relative stability. Proteomics approaches are commonly utilized as well. These untargeted proteomics analyses can identify novel protein biomarker candidates complementary to targeted assays.

Proteins emerged as the predominant biomarker class, but miRNAs, metabolites, genes/transcripts, and proteomics data also contributed substantially. Each biomarker type offers unique advantages and insights into stroke pathobiology. Integrating data across multiple omics levels represents a promising strategy going forward. S100B and GFAP were the most consistent biomarkers in the diagnosis and management of stroke, particularly ischemic stroke. S100B, originating from astrocytes, is involved in the regulation of calcium balance in neurons and plays a critical role in neuroprotection and neuroplasticity. Its elevated levels in serum have been associated with brain damage, making it a potential marker for the severity and outcome of ischemic stroke.^[16] GFAP, on the other hand, is a filament protein found in astrocytes, critical for maintaining the structural integrity of the central nervous system. It becomes elevated in response to astrocytic damage or activation, serving as a sensitive marker for brain injury. Studies have shown GFAP to be more sensitive than S100B in detecting small lesions and minor strokes, with its concentration rise indicating the extent of brain injury.^[17,18] Both biomarkers have shown promise in improving the acute diagnosis and management of stroke, offering insights into the severity and potential outcomes of ischemic events.

The frequently employed comparator group consisted of healthy controls, which did not correctly depict the situation in the medical setting. Merely 9.3% of the studies incorporated a SAH group, which is an important differential diagnosis of ischemic stroke. 50% of the studies had a sample size smaller than 100 individuals. Smaller sample sizes increase the risk of false positive/negative findings and reduce statistical power. Ongoing collaborative efforts to pool samples and data across centers would help increase statistical robustness. The location was unspecified in most of the investigations (45%, 85/190), limiting assessment of generalizability. The studies that included information on the setting reported that the emergency department (ED) was the most frequent (15%, 29/190), followed by the neurology ward (14%, 26/190), and inpatient stroke units (6%, 11/190). Enrollment from stroke centers or off-site through mobile stroke units could help improve representation.

About one third of the studies, 29% (55/190) did not report the reference standard used, potentially bringing diagnoses into question. Clear reporting of rigorous diagnostic criteria is critical. The sample times varied extensively, ranging from 1 hour to 24 hours after the onset of stroke. The predominant sampling intervals were 24 hours (51%, 97/190), 6 hours (17%, 32/190), and 12 hours (16%, 31/190). The practice of collecting data at various time intervals was observed in 15% (29/190) of the investigations. This provides valuable information about biomarker kinetics. Early time points and repeated sampling are crucial for biomarkers intended to guide acute triage and clinical decisionmaking.

Overall, there was some lack of reporting on the setting and reference standards. The most often reported details were the emergency department (ED), inpatient wards, CT scans, and MRI scans. Sampling during the first 24 hours was common, with 24 hours and 6 hours being the most commonly used time intervals. Several research utilized

multiple time points to monitor the fluctuations of biomarkers over a period of time.

This review highlights opportunities to increase sample sizes through multi-center collaborations, enroll subjects from a wider range of clinical settings, enforce stricter diagnostic criteria, and measure biomarkers repeatedly at early time points after stroke onset. These strategies could optimize the development of accurate and clinically useful ischemic stroke biomarkers.

Biomarker research for ischemic stroke (ischemic stroke) is extensive and lacks specificity. The biomarkers lack adequate independent validation cohorts, resulting in a lack of depth. While research teams often discover new possible biomarkers, there is a shortage of sufficient validation. The adoption of these methods in clinical settings is impeded by the process of validation. There is a need to promote the involvement of research teams in the validation process to enhance the reliability of their findings and the ability to replicate results. One problem revolved around the difficulty of evaluating the diagnostic accuracy of the suggested biomarkers. Approximately 46.7% of the studies solely reported the biomarker concentration, neglecting to report sensitivity.

For future research, we suggest utilizing prospective study designs and recruiting a sample of individuals with SAH. When researching new biomarkers, it is important to concurrently validate or compare them with existing ones. Previously documented ideal biomarkers facilitate the synthesis and comparison of data to find highly valuable candidates. Researchers should strive to augment the sample size via collaborations across several centers to discover biomarkers that distinguish between ischemic stroke (ischemic stroke) and hemorrhagic stroke, subarachnoid hemorrhage (SAH), transient ischemic attack (TIA), and healthy individuals and control subjects. In order to expedite the diagnosing process, blood biomarkers may be employed. For reperfusion therapy, it is preferable to focus on sampling time within 6 hours of the onset of symptoms. Moreover, it is advisable to choose compounds as potential biomarkers that demonstrate substantial alterations during a specific period and possess adequate levels of blood concentration to be identified.

CONCLUSION

Our review emphasizes the crucial necessity of having easily available and precise diagnostic instruments for ischemic stroke in order to enhance clinical results. Protein biomarkers found in blood show potential for quickly and non-invasively diagnosing ischemic stroke. The biomarkers could transform stroke management by allowing early detection and distinction from hemorrhagic stroke, therefore aiding in prompt therapeutic approaches. Future research should prioritize verifying these biomarkers in broader, diverse populations and incorporating them into clinical practice to improve stroke diagnosis, treatment, and patient prognosis.

REFERENCES

- Prust ML, Forman R, Ovbiagele B. Addressing disparities in the global epidemiology of stroke. Nature Reviews Neurology. 2024;1–15.
- Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation. 2024 Jan 24; CIR.000000000001209.
- Pandian JD, Kate MP, Sylaja PN, Khurana D, Pamidimukkala V, Ray BK, et al. Secondary prevention with a structured semi-interactive stroke prevention package in INDIA (SPRINT INDIA): a multicentre, randomised controlled trial. The Lancet Global Health. 2023;11(3): e425–35.
- Cheng X, Hong L, Churilov L, Lin L, Ling Y, Zhang J, et al. Tenecteplase thrombolysis for stroke up to 24 hours after onset with perfusion imaging selection: the umbrella phase IIa CHABLIS-T randomised clinical trial. Stroke and Vascular Neurology. 2024; svn-2023.
- UmaMaheswaran SK, Ahmad F, Hegde R, Alwakeel AM, Zahra SR. Enhanced non-contrast computed tomography images for early acute stroke detection using machine learning approach. Expert Systems with Applications. 2024; 240:122559.
- Padvi P. An investigation into applying open-source technologies for healthcare solutions in remote and underprivileged areas: an action-based applied research. 2024 [cited 2024 Feb 19]; Available from: https://www.theseus.fi/handle/10024/819559
- Ashiq IN, Khan S, Yousaf A. Comparative Diagnostic Accuracy of Computed Tomography Scan versus Magnetic Resonance Imaging in the Emergency Department for the Evaluation of Dizziness: A Systematic Review. Indian J Radiol Imaging. 2024 Jan 27; s-0044-1778726.
- Alrosan S, Abu-Jeyyab M, Alabbasi M, Baidoun H, Yassin ARB, Mansour S, et al. A Multicentric Audit to Reevaluate the Guidelines Adherence in Computed Tomography of Kidneys, Ureters, and Bladder (CT-KUB) X-ray Imaging in Jordan. Cureus [Internet]. 2024 [cited 2024 Feb 19];16(2). Available from: https://www.cureus.com/articles/203137-amulticentric-audit-to-reevaluate-the-guidelines-adherence-incomputed-tomography-of-kidneys-ureters-and-bladder-ctkub-x-ray-imaging-in-jordan.pdf
- di Biase L, Bonura A, Pecoraro PM, Caminiti ML, Di Lazzaro V. Artificial Intelligence in Stroke Imaging. Machine Learning and Deep Learning in Neuroimaging Data Analysis. :25–42.
- Parody-Rua E, Bustamante A, Montaner J, Rubio-Valera M, Serrano D, Pérez-Sánchez S, et al. Modeling the potential efficiency of a blood biomarker-based tool to guide prehospital thrombolytic therapy in stroke patients. Eur J Health Econ. 2023 Jun;24(4):621–32.
- 11. Larrea A, Elexpe A, Díez-Martín E, Torrecilla M, Astigarraga E, Barreda-Gómez G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Current Issues in Molecular Biology. 2023;45(11):8552–85.
- Bamodu OA, Chan L, Wu CH, Yu SF, Chung CC. Beyond diagnosis: Leveraging routine blood and urine biomarkers to predict severity and functional outcome in acute ischemic stroke. Heliyon [Internet]. 2024 [cited 2024 Feb 19]; Available from: https://www.cell.com/heliyon/pdf/S2405-8440(24)02230-8.pdf
- 13. Whiteley W, Tseng MC, Sandercock P. Blood Biomarkers in the Diagnosis of Ischemic Stroke: A Systematic Review. Stroke. 2008 Oct;39(10):2902–9.
- Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity

for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews. 2022;18(2): e1230.

- Moqri M, Herzog C, Poganik JR, Ying K, Justice JN, Belsky DW, et al. Validation of biomarkers of aging. Nature Medicine. 2024;1–13.
- Rossi R, Douglas A, Gil SM, Jabrah D, Pandit A, Gilvarry M, et al. S100b in acute ischemic stroke clots is a biomarker for post-thrombectomy intracranial hemorrhages. Frontiers in Neurology [Internet]. 2023 [cited 2024 Feb 19];13. Available from:

https://www.frontiersin.org/journals/neurology/articles/10.33 89/fneur.2022.1067215

- Glushakova OY, Glushakov AV, Miller ER, Valadka AB, Hayes RL. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ. 2016;2(1):28–47.
- Maas MB, Furie KL. Molecular biomarkers in stroke diagnosis and prognosis. Biomark Med. 2009 Aug 1;3(4):363–83.